|
In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant, is a knot invariant that can be extended (in a precise manner to be described) to an invariant of certain singular knots that vanishes on singular knots with ''m'' + 1 singularities and does not vanish on some singular knot with 'm' singularities. It is then said to be of type or order m. We give the combinatorial definition of finite type invariant due to Goussarov, and (independently) Joan Birman and Xiao-Song Lin. Let ''V'' be a knot invariant. Define ''V''1 to be defined on a knot with one transverse singularity. Consider a knot ''K'' to be a smooth embedding of a circle into . Let ''K be a smooth immersion of a circle into with one transverse double point. Then , where is obtained from ''K'' by resolving the double point by pushing up one strand above the other, and ''K_-'' is obtained similarly by pushing the opposite strand above the other. We can do this for maps with two transverse double points, three transverse double points, etc., by using the above relation. For ''V'' to be of finite type means precisely that there must be a positive integer m such that ''V'' vanishes on maps with ''m'' + 1 transverse double points. Furthermore, note that there is notion of equivalence of knots with singularities being transverse double points and ''V'' should respect this equivalence. There is also a notion of finite type invariant for 3-manifolds. ==Examples== The simplest nontrivial Vassiliev invariant of knots is given by the coefficient of the quadratic term of the Alexander–Conway polynomial. It is an invariant of order two. Modulo two, it is equal to the Arf invariant. Any coefficient of the Kontsevich invariant is a finite type invariant. The Milnor invariants are finite type invariants of string links. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Finite type invariant」の詳細全文を読む スポンサード リンク
|